月曜日, 4月 28, 2008

書いたどー

 やっと、Data Mining and Knowledge Discovery[Link]に投稿する論文のドラフトを書き上げた。とても苦しかった。何度も途中で腐りそうになったが、意地でがんばった。これで、今年度書く予定の4本の論文のうちの1つにめどがついた。まだまだ荒削りなところがあるが、方法論の論文にしては読みやすくコンパクトにまとまったと思う。投稿までに説明を簡潔に、そして図をもっとわかりやすくして、ぜったい受理されるようにしたい。
 論文のタイトルは、「Ethological Data Mining: An Automata-based Approach to Extract Behavioral Units and Rules」。論文のドラフトをブログに乗せるわけにはいかないので、アブストラクトとこの解析方法の概念図を載せます。
Abstract

We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. Introducing original extenstions, we integrate two elemental methods -- the N-gram model and the Angluin's machine learning algorithm into an ethological data mining framework. It allows us to obtain the simplest finite automaton representation of behavioral rule that accepts (or generates) the smallest set of possible behavioral patterns from sequential data of animal behavior. With this method, we demonstrate how the ethological data mining works using real birdsong data and performs experimental evaluations of this method using artificial birdsong data generated by a computer program. These results suggest that our ethological data mining effectively works even for noisy ethological data by appropriately setting the parameters. In addition, we demonstrate a case study using the Bengalese finch song, showing that our method successfully grasps the core structure of the singing behavior such as loops and branchings.
こちらがEthological Data Miningの概念図。EUREKAでReversible Automatonを使って解析をするときのプロセスフローを表している。


下の写真は、論文の構想を練っているときに書きなぐったホワイトボード(柿下君が写真を撮ってくれた)。


 次は、ジュウシマツの歌学習の発達ダイナミクスの研究だ。夏休みにOferの所に行くまでに、2TBのデータすべてを解析するのだ

0 件のコメント: